INTERNATIONAL STANDARD

Second edition 1999-02-01

Plastics — Determination of water absorption

Plastiques — Détermination de l'absorption d'eau

Reference number ISO 62:1999(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 62 was prepared by Technical Committee ISO/TC 61, *Plastics*, Subcommittee SC 6, *Ageing, chemical and environmental resistance*.

This second edition cancels and replaces the first edition (ISO 62:1980), of which it constitutes a technical revision.

Annexes A and B of this International Standard are for information only.

© ISO 1999

International Organization for Standardization Case postale 56 • CH-1211 Genève 20 • Switzerland Internet iso@iso.ch

Printed in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

Introduction

Plastics exposed to water are subject to several different effects:

- a) dimensional changes (e.g. swelling) caused by absorption of water;
- b) extraction of water-soluble components; and
- c) changes in other properties.

However, exposure to humidity, immersion, and exposure to boiling water can result in distinctly different material responses. The equilibrium moisture content can be used to compare the amount of water absorbed by different types of plastics when they are exposed to moisture. Moisture content determined under non-equilibrium conditions can be used to compare different batches of the same material and to determine the diffusion constant of the material when determined under carefully controlled non-equilibrium exposure conditions to moisture and when using plastic specimens of defined dimensions.